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Abstract

Starting from the differential equation of the continuity of the current
flow, a general solution is given for problems in which the conductivity is
given as a function of space and time. A physical interpretation for the
complete Mi.xwell current is obtained, and it is shown how the Maxwell current
can be composed of two field vectors, namely, that of the electrostatic field
and of the stationary current flow. Each vector is veighted by a different
time function, which can be calculated from the time function of the current
source*

A method is developed for the calculation of the stationary current flow
field; and the eigen functions for cartesian, cylindrical, and polar coordi-
nates axe given. The mirror law for the current flow is determined in a
medium vhere the conductivity increases with altitude according to an
e-function. The mathemtical formalism is explained, using the example of the
field of a decaying point source.
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ON THE THEORY OF THE ATMOSPHERIC ELECTRIC CUM=ENT FIOi, IV

INTRODUCTION

Problems in atmospheric electricity are usually treated according to the*
electrostatic theory in spite of the fact that a three-dimensional current
flow is being dealt with here. The reason for this unsatisfactory state is
that the electrostatic theory is yorked out in great detail in numerous text
books of mathematics and physics,l, 2 , 3 but problems of the three-dimensional
current-flow theory--especially with a variable conductivity or a convection
current--are only briefly discussed, if at all. Therefore, the author
started to publish some of his notes on the current-flow theory under the
genera* ti~le, "Zur Stroemwngs-t~eorie des luftelektrischen Feldes I, II,
1 1 1 ."1,5, 6 Also, two papers,7, which deal with the calculation of the
three-dimensional current flow under certain boundary conditions.

Preceding the author, 8 Holzer and Saxon9 published their famous paper,
"Distribution of Electrical Conduction Currents in.the Vicinity of Thunder-
storms," end in 1955 Tiumra presented at the First International Conference
on Atmospheric Electricity his excellent "Analysis of Electric Field after
Lightning Discharges." 10 In both papers the calculation was carried out
according to the current-flow theory. But in the majority of publications in
the field of atmospheric electricity, the electrostatic theory is still used
fQr calculations, and this quite oftert leads to erroneous conclusions.

It soon became obvious that the solution of a few single problems was
not enough to introduce the application of the theory of current flow to
atmospheric electric problems in general. A more systematic discussion of
the methods of solution, with a strong accent on the physical meaning of the
mathematical manipulations and the consequences of the introduced assumptions,
is necessary. This discussion is given in this report.

DISCUSSION

The Differential Equation of the Three-Dimensional Current Flow

Table I gives a list of the symbols used, with their meanings and
dimensions.

In the electrostatic theory, only the quantities on the left side of the
list axe present; while in the current-flow theory there are, in addition,
the four quantities of the right side. It is seen that the dimensions of the
quantities of a corresponding pair differ only by the addition of the time
unit, s, to the dimension of the electrostatic quantity. This will prove
very fortunate .n the conversion of solutions of the electrostatic theory
into these of the corresponding solution of the current-flow theory, as will
be shown later. However, this "fortunate" relationship has a deeper physical
meaning, which becomes much clearer if the dimension of the charge cb
(coulomb) instead of the current A (ampere) is introduced into the dimension
of the quantities.



Table I. Symbols Used, with Their Yaninus and Dimensions

q ['As] - charge i [A] -strength of current source

q[A0] a spae c~4arge density w)[ space current source density

0L ']m&. ret~ islcmn r ]-current density

c [As] dielectric constant el [].
LVM, J - - conductivity

'E[11] field strength

36 [] -potential function

With the relation AS = cb, the following are obtained:

0, [ob] I 1
jb] cbI

EJSa] [abo

In this way the time has been removed from the electrostatic quantities,
where it does not belong, and introduced into the current-flow theory, where
one would expect it to be. If the time is now extended, e.g., one second to
infinity, then the movement of all particles would freeze and everything
would be static. The four specific quantities of the current-flow theory,

I, w, i, and x, would vanish because the time is in the denominator of the
dimensions, and the electrostatic conditions are obtained. So, one could say
that electrostatic is a special case of the current-flow theory.

In the current-flow theory, all the quantities listed above can be func-
tions of space and time. The problems encountered are mostly of the follow-
ing type: Given are the spatial distribution and the time function of the
current source w and the electrical properties of space e and X as functions
of space and time. This includes also the boundary condition such as a per-
fect conducting earth surface, or sometimes an ionosphere of infinite con-
ductivity. The problem is to calculate the potential function and the field
and current distribution.
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The dielectric constant e is alwas a true constant in space and time,
since the difference of c in air and in a vacuum is neglgible. The manner
in which the conductivity X is given determines the grade of difficulty of
the problem, and to some extent also the method of solution. Therefore, the
problems may be subdivided into the following six classes:

1. The conductivity is constant in space and time.

2. The conductivity is constant in space, but a function of time.

3. The conductivity is constant in time, but a function of space.

4. The conductivity is a function of space and time.

5. The conductivity is a tensor (influence of the earth's magnetic
field in the ionosphere).

6. The assumption for the definition of the conductivity is no longer
valid.

This is the case in outer space, where the mean free path of the moving
particle is greater than either the anteina of the measuring instrument or
the space under consideration.

Classes 1, 2, and 3 are special cases of class 4. Class 4, again, could
be considered as a special case of 5. However, the solution of 5 as well as
of 6 class problems requires a mach larger mathematical effort. Therefore,
this report is limited to a general solution of I to 4 class problems.

The solution to class 1 problems can be obtained easily if the corres-
ponding electrostatic solution is known. It is necessary only to substitute

for the electrostatic quantities, Q, q, D, and e, the corresponding current-

flow quantities I, w, , and X of table I in the for ulas of the potential

function 0 or of the electric field distribution E. For instance, the

potential function 0 - 4&- 1 of a point charge leads to the potential func-

tion - of a point current source.

The applicability of class 1 problems in atmospheric electricity seems
to be very limited as, for instance, to the calculation of the effective
altitude or area of field or current antennas, where the conductivity in the
space considered may be assumed to be constant. But it is shown later that
the electrostatic solution is needed in addition to that of the stationary
current flow for the general solution of class 3 and 4 problems. Also, the
important matching condition1 1 for air-earth-current measurements can be
obtained with the assumption that the conductivity is constant in space and
time.

If the conductivity changes with time but is constant in space, this
would result n mismatching, which is a problem belonging to class 2. An
analysis of these conditions for air-earth-current measurement at the ground

3



is given by Ruhuke.1 2 A a larger scale the same problem is encountered by
the air-earth-current radiosondeS 3 where the conductivity increases during
the flight time from the low ground value by a factor 100 or more to that in
the higher altitudes. Here the assumption is made that the conductivity can
bo considered an constant in the space occupied by the antennas of the radio-
sonde., but will increase in time with the ascent of the balloon.

The calculations given by the author v7 , 1 3 belong to class 3.

There is no example of class 4 problems in the literature. This type
of problem will be encountered by the calculation of the austausch generator,
where the air turbulence will change the conductivity in space and time and
also cause a convection current which is a function of space and time.

The differential equation of the three-dimensional current flow, which
has to be fulfilled by all solutions, is derived from the second Maxwell
equation and is well known as the equation of the continuous current flow.
It is written in the following form:

div ( + i) . (W.

The intensity of the current production is usually given by a convection

current .. In this case the space current source density w is given by

div C. If this is introduced into Eq. (1),

div + div (2)

From Eq. (2) follows

+ iu + C. (3)

c, which appears here as a kind of integration constant with the condition

div c = 0, is known as the complete Maxwell current. It is a current flow,
which originates at the boundaries of the considered space. In thunderstorm

problems, c would represent the fair-weather current between the ionosphere
and the earth, which penetrates the thunderstorm ares as well as the fair-
weather areas. However, the fair-weather current lensity is much smaller
than the current density caused by the thunderstorm, and therefore it is
usually neglected. This cannot be done in the case of the austausch genera-
tor, which works in the fair-weather region. Here, the convection current

density of the austausch generator C and the current c produced by the
charged earth are of the same order of magnitude. (The conduction current

density of a is the well-known air-earth-current density.) Therefore, in
this case, both current sources have to be considered. But as the principle
of superposition also holds in the current-flow theory, the current dis-
tribution of the two sources may be calculated separately, and the solutions
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superimposed. The dielectric displacement D and the current density i are
connected with the electric field E through the following two equations:

e E = D.(4)

X E 1. (5)

(If x is a tensor Aas in class 5 problems, A* Esi - , and from here on the
calculation of class 5 problems would branch off.) With Eqs. (4) and (5),

E is substituted for i and D in (3), and

2E +-)6

is obtained. The solution of this differential equation is

id X dt

This is the general solution for Tfor all class 1 to 4 problems. The inte-

gration constant t(to) gives the field distribution for tzO. On account of

the integration constant, the integral can be written without boundaries; and
the letter t, which ordinarily would appear as the upper boundary of the
integral, is used as the integration variable of the integral.

According to the above-mentioned principle of superposition, the field-

vector rmay be split up into two parts; namelyp E, which results from the

convection current 7, and Eb, which results from current emitted at the
boundaries.

i r , . dt

Jcae Xd E (=)+e J a t) . (9)

Equation (8) cannot be discussed without further knowledge of the con-
vection current Z. The analysis of Eq. (9), especially the physical meaning

of the complete Maxwell current c is given below.

The Solution of Boundary Problems without Convection Currents

Set C = 0, and from Eq. (6) the electric field % due to the boundary

conditions may be obtained. With the further omission of the subscript b,
it is

5



Bt e 6

The form and the physica. meaning of the complete Maxwell current wll

now be deduced from the three boundary values C., e, and 'C which + has to

assume, first at the boundary ('b), second, if X = 0 (ce), and third, if

=0

At the boundary of the current source, the field Eb is given by the
field strength Fb and the time function T of the current source* Therefore,

Eb T. (i)

Fb(xy,z) is hereby a function of the space coordinates x, y, and z

only, and T(t) is a pure time function. This implies that on all parts of

the boundary of the current source the field change3 with the same time
function. From Eqs. (10) and (11) follows

Cb dT b 
(12

C . Fb t + T% Fb T.

If X = 0, the electrostatic field distribution is obtained, which will be

indicated by a subscript e at tha 1,4xwell current e and the field vector

Fe' Furthermore, the finite propagation velocity of the electric field with
the speed of light wLll be neglected, which means that the electric field

E follows everywhere the time function T of the source momentarily. E =

Fe * T. Hereby excluded are all problems where the propagation velocity of
electric sifnals becomes impor-ant, for instance, by the electromagnetic
wave of a lightning discharge (sferics). From Eq. (10) follows

C e aT (13)

If the time function of the current source is a constant, the condition of
the stationary current flow is obtained, which is indicated by the subscript

S. With = oand -- FS T, from Eq. (10) is obtained

Cs r T. (A

Equations (12), (13), and (14) indicate the form which the Maxwell cur-

rent in general will assume. It may be inferred that " is composed in the
following manner:

- dT -
c = R Fe d + XF S T. (15)

6



Eqaation (15) fulfills all the required conditions. At the boundary,
- -7 -

where Feb =' sb *b Fb Eq. (15) changes to Eq. (12), and therefore meets the

boundary conditions . Furthennore, div c = 0, because div Fe = 0 as well as

div X F. = 0. Thierefore the complete Maqell current c is given in the form
of Eq- (15),,

If Eq. (15) As introduced into Eq. (9), with the omission of the sub-

script b, with E(tO )  O

Xdt ,dt Xdt
E = 'F0o + re e i dt a

f de tdt

+ FS  T e TLit. (16)

The physical mearuing of Eq. (16) becomes much clearer if the following

(breviations are introduced for the time-function factors of o, Fe, and F .
I will be

Te = e t e dr. (17)

~f2~ Xd_X dt dt

Ts=e C Te P dt.

.X dt
To . e . (19)

By partial integration of Eq. (17),

.j xat 
S Xdt

Te =T-e C

is obtained, and with Eq. (18),

Te = T - TS, T = Te + Ts. (20)

The sum of the time functions of the electrostatic field and the
stationary current-flow field is the time function of the current source.
These time-function factors are obtained by the prescribed integration
process on the time function T of the source. They are different at each
point in space, because X is a function of space; and they are of different

form for the electrostatic field Fe, the stationary current-flow field FS,
and the decaying initial field Fo"

If Eqs. (17), (18), and (19) are introduced into (16),



3 0 T0 +Fe e+ TV.(a

The electric field E is composed of three vectors, each of them modulated by

a different time function. Fo is the field distribution at the time t = 0

and decays with the time constant of the observation point. e is the elec-etrostatic field, and the weighting function Te is zero for a constant-
current source, but becomes very large for fast time variations of the

source. F is the field of. the stationary current flaw, and the factor T.
becomes one for a constant current source. It is pointed out that in general

Fo Fe, and F. do not have the same directions, and the rules of vector

addition have to be applied. After the decay of Yo, the field-vector E is

limited to the space between F. and Fs.

To illustrate the point, the field lines of a point source are drawn in
Fig. 1 for the electrostatic case (broken lines), and for the stationary
current-flow case in which the conductivity increases with altitude according
to an e-function (solid lines). It is seen that for almost any point in
space the field direction and aplitude--the amplitude is indicated by the
spacing of the lines--is different in the two cases. If one arbitrary obser-

vation point is selected, a picture of the composition of the field-vector

E is obtained, as given in fig. 2. The weighting time functions will change

with time, and. accordingly the vector wi3ll change Its amplitude and shift
its position inside the hatched space.

For a fast time variation, i Is predominantly given by Fe; and for slow

time variation, E will move back to the position of F. Hence it becomes
obvious that for a complete solution the electrostatic field has to be cal-
culated. as welU as the field of the stationary current flow. The electro-
static, the current flow, and the initial field ie, F, an - are given by

the gradient operatiou from their potential functions 0., 0$, and 90,
respectively.

" "rd - -TS grad - - grad 0. (22)

Hence, the electric field !is also given by the gradient of a potential

function 0. B = - grad 0. Terefore, with respect to 1q. (21),

grad 0 - To ral 40 + Te grad 4e + T,5 grad Os. (23)

Equations (21) and (23) ere the general solutiorm to all class 1 to 4
problems in the absence of a eorvection current.

Solution of the Differential Equiation of the Stationary Current Flow

If the current flow is stationary, derivatives with respect to time are
zero, and from Eq. (2) is obtained the differential equation of the station-

ary current flow.
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Fig. 2. Composition of the general field vector ' by vector addition

from the electrostatic field vector Fe weighted by the time

function Te and the stationary current flow field vector Fs
weighted by the time function Tr.

10



div is =0 . (24)

With =X and 's= grad '

div ), grad s 0. (25)

The following self-explanatory operations are carried out on this equation:

div X grad$ = 0.

X div grad 0 + grad ) grad 0 0.

Divide by X2 , add and subtract 0 div grad X2.

:2 div grad $+ 2 grad X)2 grad 0+ 0div grad )1 - div grad
0.

11

div (& 0) -( div grad (x = 0.

div grad X2 div gad 0. (26)

Here are defined two new functions:

I1
M - ;2 0 and N =2.(27)

Introducing these new functions into Eq. (24), the relatively simple
equation is obtained:

div ra M div grad . (28)
M N

With this equation there are available all the solutions of the electro-
static theory dlv grad M = 0, if it is possible to present X by a function
N2 , of which div grad N a 0.

It is pointed out that different coordinate systems may be used for the
representation of M and N because the operation div grad is invariant
against a change of coordinates.

As an example, assume that it is desired to calculate the potential
function of a point source imbedded in a medium where the conductivity can
be represented or approximated in the space under consideration by a suitable
piece of a parabola.

X = ;% (mz - a)2 . (29)

The parameters m, a, and can be used to select the best-fitting piece of
the parabola.

From Eq. (27) follows

SX 1o Crz - a (30)



and div grad N __ d . 0. 
(31)

dz 2

Introducing this result in Eq. (28),

div grad M - 0. (32)

This equation means that any known electrostatic potential function or any
sum of them may be chosen in any coordinate system which suits the purpose
best. For a point source, polar coordinates would certainly be chosen,
where the function M is given by

M = A . (33)
r

A is here a constant given by the strength of the source I, and r is the
distance of the observation point from the center of the point source. If
the point source is located in the cartesian coordinates at the point xo,

Y Zo, then r is given by r [(X.Xo) 2 + (yy )2 + (Zz )2] TYO Zo The poten-

tial function is now easily obtained by Eqs. (:), (29), and (33).

M A
T (34xy (= - a) r

The determination of A remains as the last step. If the point source is
inclosed by a small sphere of the radius ro, which is chosen so small that
the conductivity X can be considered as constant with the value at the cen-

ter of the sphere ' n , (, zo - 2 according to Eq. (34),

A (~-- i- ... . .. (35)
\~(m. zo - a) r

The field in the r directiou on the little sphere r = rO is given by

A 1
2W XOF m ZO a) r.

and the current density according to Ohm's law i =F,

ir A o (m o 2 -A ).Q2 (M z 0  a)i r . = - -

.1 2 2
X 2 (m z0 -a) - 0  ro

Integration over the surface 0 of the little sphere gives the current
strength I of the source.

A Xo (m zo - a) 2
Iin irdO . 2Wo

0 0

12



or A = (36)

4 n X (m ZO - a)

If this result is introduced in Eq. (34), the final solution for the poten-
tial function of the problem is obtained.

l • (07)

Unfortunately, in atmospheric electric problems, the conductivity is
usually represented by an e-function. For instance, in a cartesian coordi-
nate system x, y. z, in the manner

1- 2 k . (38)

The x,y plane with z = 0 represents hereby the earth's surface, and ) the
conductivity at the ground. This function (given in Eq. (38)) does not
fulfill Laplace's equation, but it is

dlv grad Xia x,* k2ekz - k2 N, and

dl gad k. (39)
N

Th2erefore, the function M is given as the solution of the differential
equation

div Vad M - k2 M . 0. (4o)

To solve Eq. (40), the method of the elgen functions will be applied,
but confined to problems of rotationa symnetry. This means that, for
Instance, In polar coordinates r., @p , the function M is given by the
product of a function f(r), which depends on r only, and another function

g(o), vhich depends only on 0.

H a f(r) g(M). (41)

This leads with Eq. (40) to the differential equation

div grad fog - k2 f.g . 0,

or, in polar coordinates,

g ( M + f isin i " fgu , (42)
d r2 rdr}) r 2 sing Q d0

or

o r 1 ( d 2 f g 2 t l 1 d s i n g 1 .3 ( 4 3 )
; 2 f I-dX;§ r dr) 13k g sin d dO



if 1.L d~ s inQ - n (n+l) (44)g sin 0 Td .Q

where n 0, 1, 2, 3, . . ., the spherical functions of the first kind Pn

(Legendre's functions) are obtained as a solution for g.

- Pfn(cos Q). (45)

If Eq. (44) is inserted in (43)., the differential equation

d4 2 & - (a (ntk) + k2) f = 0 is obtained fortf. (46)
dr2 r dr r2

Equation 46 can be solved with the help of cylinder functions Zp, with a
noninteger parameter p x n + -[ The solution is given by

(, (j k ( k () (47)

Thereby, 3 is the imaginary =it J = Fl .

The complete solution for M follows from Eqs. (41), 45), and (47).

Mn= An I(j k r) 24Z4 (J k r). (48)

An is an arbitrary constant, which serves to meet the prescribed
boundary condition. M may be presented In a more general way as a super-
position of the Mm.

CO

SZ M, (49)
n=0

The cylinder functions Z p of a noninteger parameter p can be expressed
in given polynomials of the arguiment and sin and cos functions. For
instance, for n = 0,

2
2 sJi K k r.

With P 2., and sin.j k r er sin hkr r ~ te (kr) - exp (-kr)],2 t[ .p

M,, A,)i (50)
The constant factor (2 't -' is hereby combined with A0 .

Each of the e-fu.ction terms in the bracket of Eq. (50) fulfills the
differential equation. Hence, if the boundary condition requests a pole
(MO ; co) at the origin r = 0, only the second term is used. This will then
lead to the potential faunction of a point source.

According to Eq. (2-) . the potential function is given by

M



Using only the second term in the bracket of Eq. (50), and letting A.
.1

take care of the sign and the constant factor , 2, the potential function of
a point source is obtained.

A.e , [ kp + z)] _ (5)
kr

In a manner very similar as before, it is possible to calculate from
Eq. (51) the field strength in the r direction on the surface of a very small
sphere around the current source I, convert the field into the current
density, and integrate over the surface. This gives the strength of the cur-
rent source I, and the constant Ao can be determined. It is

Ao =- -- ,(52)

whereby ) denotes the conductivity value at the current source. From
Eqs. (51) and (52), the final solution is obtained:

exp (r +z)] (53)

For k 0, Eq. (38) is =o exp (2 kz) - N, a constant, and
Eq. (53) simplifies to

I .1

This is the right solution for the point source in a medium of constant
conductivity.

The equation (53), which follows here as the simplest solution of Eqs.
(48) and (49), is the key solution in the calculation of the electric field
of thunderstorms of Holzer and Saxon, 9 in the calculation of the recovery
curve of lightning discharges by Tamur&,1 0 and in the calculation of the
thunderstorm generator by the author. 8

It is mentioned here that a similar procedure to that used for polar
coordinates led to the eigen functions of the differential equation,
div grad M - k21= 0 in cylindrical coordinates z, R, 9. Again assumi
rotational symmetry,

Mn nZo(n k R) exp [(l - n2)! kz . (54)

Z is the cylinder function of the order zero. n is here not confined to an
integer, but may assume any value. For n w 0,

= Ao exp (±kz).

15



It is seen that the root of the conductivity function A = ez is the
eigen function of the order zero in cylindrical coordinates. In cartesian
coordinates the eigen functions are given by

Mn A exp (±cx) exp (±e2y) exp (±c3z). (55)

cl, c2 , and c3 are arbitrary functions of n, restricted only by the equation

C12 + C2 + c 3 2 k2 . (56)

A final renark is made about the representation of ), in polar coordi-
nates. It is seen from Eq. (48) and from Eq. (50) that a pure e-function is
not an eigen function in the polar coordinate system. Therefore it is not
possible to obtain a simple solution of the potential function 0 for
X = ko exp (2 kr). The b.,st that can be done is to choose the following
function for A.:

rO ep [ (r - r,)]

r2 (57)

in this ca.e,
I e kr

NXk 2•x - o)*r

which Is an ei6pn function according to Eq. (50). AG is given byI

Ao * W r. exp (-k ro). If r. denotes the earth's radius, and this discus-

sion is confined to the space between the earth's surface and about 100-km
altitude, then the r2 in the denominator changes very little, but the
e-function in the nominator increases in the requested way. Hence, the
represeptation of X by Eq. (57) is absolutely feasible. This will, then,
bring again the fall benefit of the simple solutions as ctlined above.

The Mrr-or La in the Crren-Flov Theo

To introduce the earth s surface as an equipotential layer, the mirror
law is applied in the electrostatic theory. As this is a powerful method
which leads "to simple solutions of boundary problems, its application in
the eurent-flo theory will be discussed briefly.

Take a point rource 1 and place it Ln a cylindrical coordinate system
z, R, 0 on the posit-ive z exis at the point z = h. With regard to the
coordinate sysLem used t.'o1 Foryila (53), the zero point has been shifted
down the 7 axis by the Iiitsaice h. As can be easily verified, this means
that the potential f-unc-i.on 0 is now expressed in the following form:

exr L'(r + Z -h)

kh = X exp (2 thh) Is here the cod:,ictivity at the altitude h, and r is

given by r [ R = + (, h 2

16



To now introduce the plane z = 0 (earth surface) as an equipotential
layer, place, analog to the electrostatic theory, a point source of the

strength I* at the mirror point of I, i.e., at z = -h. The potential
function 0* of this source will be

exp [-k(r* + z + h)]
4 TX* r* ' (59)

ith * = (z + h) 2 + R2 and X* N O exp (-2k h), the conductivity value
at the point z = -h.

The superposition of and $* results in a potential function , which
will be zero for z 0.

S elp -k~r +z -h

= Ir

+ exp [-k(r*+z + h)] (0

For z =0 is r r*, 0 exp (kh) + exp (-kh), or

1* = - ' * exp (2 kh) " (61)Xh

If Eq. (61) is inserted in Eq. (60), the final formula for the
potential function 0 is obtained:

I [ep .(-k exCp (-kr*l] e~c kzh (62)4 iT r r* " p-(zh

For k = 0, Eq. (62) will change to the potential function Oe of the
electrostatic theory.

Ie D [- L"] . (63)

With X* exp (2 kh) = )6, from Eq. (61),

I* =-- I. (64)).h

In the electrostatic theory, the mirror source is placed at the mirror
point -h and its strength is of the same amount but of opposite siga of the
original source. It is seen here that in the current-flow theory the loca-
tion and the sign reversal are retained, but that the amount of the mirror
source is smaller than the original source in te same proportion as the
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conductivity at the ground ).O is smaller compared to the conductivity Xh
at the height of the original source.

Applied to the current flow of a thunderstorm, this result has far-
reaching consequences, as pointed out by the author. It means that only a
part of the conduction current produced by the thunderstorm--namely, that
given by I*--flovs to the earth' s surface in the immediate neighborhood of
the storm, while the other part is drained off to the ionosphere and con-
tributes to the air-earth current of the fair-weather areas. The difference
between the lines of current flow of a point source in a medium of constant
conductivity, A a , (equivalent to the field lines of the electrostatic
case), and those of a point source in a medium of increasing condyctivity,
x - A exp (2 kz), can be easily recognized from Figs. 3a and 3b. 0  This dif-
ference also affects very drastically the amount of charges 9f the thunder-
storm, as calculated from field measurements at the ground,14, 15 the field
reversal at the ground from a bipolar thunderstrm the recovery curve of
the lightning stroke,1 0 and many other phenomena. But, as the object of this
report is to outline the methods of calculation more than to discuss specific
application, the mathematical aspects vill be continued.

The Potential FUnction of a Decaynd Current Source

This problem finds its application in the calculation of the recovery
curve after a lightning discharge. Field records of a thunderstorm taken at
the ground show that each lightnine flash increases (or decreases) the so-
called stationary field of the thunderstorm very suddenly, and that after the
flash is completed the field returns to its preflash value in an e-function
fashion, whereby the time constant of the decay Is approximately ten seconds.
The return is called the recovery curve.

This phenomenon is rather puzzlina because the time constant of the air
at the ground is about 600 seconds, and charges separated or produced by the
lightning flash should theref-re decay mach slower. Tamura 0 showed in an
excellent analysis that a much faster decrease of the field at the ground
will result if, besides the decay of the lightning charges with the time
constant in the cloud and the regenerating effect of the thunderstorm' s
charging mechanism, the screening effect of the space charge is taken into
account, which builds up under the influence of the conductivity which
increases with altitude. In other words, his calculations are based on the
theory of current flow. The calculation given here may be considered as a
part of Tamra's analysis, but presented from a different point of view,
namely, to show a classical example of the full application of the current-
flow theory.

The key problem is that of the decaying point charge. Assume that the
charge .0 is deposited by the lightning flash at a point at the altitude h.
(If it is a cloud flash, in addition a negative charge -Qo would have to be
placed at a higher altitude H and the resulting fields superimposed.) The
charge decays with the time constant 91 at this altitude. g, = _.. The

charge Q left at the time t is then given by
xtt

-% e * (65)
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The current output I is given by
_ X't

t -Q, e (66)
dt e

Therefore, the time function T of the current source is given by the
exponential function of Eq. (66).

?, xt

T = e . (67)

The conductivity X depends here only on the space coordinates, but is con-
stant with time. The weighting time functions Te, Ts, and Tc given by
Eqs. (17), (18), and (19) simplify to

-Xt Xt

Te = e e dt. (68)

.Xt _t

TS = e T e dt. (69)

To e e (70)

With T given by Eq. (67), the integrals can be solved, and it becomes

_12

Te = X "-X, T. (71)

Ts X T. (72)

The equation Te + Ts = T is fulfilled by Eqs. (71) and (72). The next Steip
is to determine Fo from the initial condition. For t = 0, it is found that

the field E' shall be the electrostatic field 7e, since the lightning flash
occurs in such a short time that the space charges of the stationary currenT-
flow field due to the conductivity variation have not accumuated. From
Eqs. (21), (67), (70), (71), and (72) follows for t = 0,

Fe Fo Fe + 'X FS,

or X
oF + T" (73)

If Eq. (73) is introduced into Eq. (21), obtained with regard to Eqs. (71)
and (72) is
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(Tox.T): (T TO)Fs. (74)

0quatioil (74) is the f inal form o:1' the field equation of the decaying
point source. It is valid for every point in space. But it must be remem-
bered that vector addition is required, because e and Ps do not have the

same directiou. Only at the ground is the direction of Y, Fe, and F, the
sawM, namely, vertical to the ground. surface. In this case the vector
equation ('14) s:imlifies to a scalar equation. Notice that the sum of the

weighting time ftmctions of Ye and. ; ).gain is T, the time function of the
current source.
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